

Cathode Synthesis and Voltage Fade: Designed Solutions Based on Theory

<u>Christopher S. Johnson (PI), Eungje Lee, and Michael Slater</u>

Chemical Sciences and Engineering Division Argonne National Laboratory

Annual Merit review, Washington DC May 13-17, 2013

Project ID: ES190

Overview

Timeline

- Start Mar. 2012
- Finish Sep. 2015
- Percent complete: 30%

Budget

- Total project funding in FY2013: \$335K
- 100% DOE

Barriers

- Loss in energy density with cycling (voltage fade or VF)
- Cost
- Rate capability
- Low temperature performance

Partners

- Lead P.I. C. S. Johnson
- Collaborators (Argonne):
 - E. Lee, M. Slater (CSE Argonne)
 - R. Benedek (CSE Argonne), H. Iddir (MSD Argonne)
 - Ali Abouimrane, Ilias Belharouak, Ira Bloom, Jason Croy (all CSE Argonne)
 - M. Balasubramanian (APS Argonne)
 - S. Hackney (Michigan Technological University (MTU))

Relevance

- New cathode materials are required to improve the energy density of Li-ion cells for transportation technologies.
- LMR-NMC suffers from a voltage drop, thus lowering the overall energy density during long-term cycling. This impedes its effectiveness as a new high-energy cathode material for PHEVs, and Evs.
- Synthesis of new materials with slight composition perturbations will assess effectiveness for improvements.
- In this work, we are comparing our synthesis results to theoretical predictions from First principles calculations. This will tie in theory to experiment.

Objectives

Synthesize Voltage Fade corrected cathode materials possessing high capacity and high-energy cathode materials that are **low cost**, **with high-thermal stability** for PHEVs & EVs

- The implementation of layered transition metal oxides to Li batteries is well established, but this task must meld theory & modeling to guide synthesis.
- Demonstrate viability of syntheses routes to make VF-free cathode materials
 - Effectively dope or substitute elements into Li₂MnO₃ LiMO₂ without changing the composite components such that high energy is lost.
- Perform both physical property and electrochemical property measurements
 - Cycle the material in Li half cells and show at least 40 cycles above 200 mAh/g
 - Conduct power rate tests and demonstrate a capacity of 200 mAh/g at C/1 rate
 - Evaluate the phase type of the material using microscopy methods
 - Measure the phase purity by XRD after multiple cycles to evaluate stability
 - Measure oxygen loss and oxygen content in materials Vehicle Technologies Program

Milestones of FY13

- Evaluation of link between synthesis
 and theory/modeling
 Completed
- Multiple synthesis routes to VF-free
 materials

 On target
- Conduct synthesis of materials On-going
- Investigation of physical and On-going electrochemical properties
- Oxygen analysis of synthesized ______ Initiated materials during first charge and subsequent cycling

Approach: Synthesis Team - problem solving

$$xLi_2M'O_3 \cdot (1-x)LiMO_2$$

THE TEAMS and OUR THEMES:

- A. Ilias precursor synthesis and processing
- domain size and component segregation/integration
- B. Chris structure, doping and substitution, layer stacking sequence
- stop spinel formation, maximize pre-plateau capacity
- C. Ali surface events/coatings & doping
- control reactions initiated at surface; surface doping
- D. Jason component composition; new materials
- E. Ira phase space; home in on preferred compositions that show less VF
- F. Roy & Hakim theory

Interfacing & Communication - a group effort

Voltage Fade

 $0.5Li_2MnO_3 \cdot 0.5Li[Ni_{0.375}Mn_{0.375}Co_{0.25}]O_2$

Voltage Fade is significant during the early cycles, and slows with cycle number. Fade is accelerated by higher test temperature and higher upper cutoff voltage.

Electrochemical Activity of Li₂MnO₃ (Li₂M'O₃)

Lithium is fully removed from Li₂MnO₃ material as measured by ⁶Li NMR Li₂MnO₃ is useful as a surrogate for Li₂MnO₃ • LiMO₂ composites

First charge of Li₂M'O₃ component: predicted voltage for hypothetical reactions

Reaction	Voltage (DFT)			
$2/3\text{Li}_2\text{MnO}_3\text{-Li} \xrightarrow{1/4\text{O}_2} 1/6\text{Li}_2\text{Mn}_4\text{O}_9$	4.1			
$5/6\text{Li}_2\text{MnO}_3\text{-Li} - 1/2\text{O}_2 \rightarrow 1/6\text{Li}_4\text{Mn}_5\text{O}_{12}$	4.2			
Li_2MnO_3 - $\text{Li}_x \rightarrow \text{Li}_{2-x}\text{MnO}_3$	4.5 (Okamoto,'12)			
Li_2RuO_3 - $\text{Li}_x \rightarrow \text{Li}_{2-x}\text{RuO}_3$	<4.5			
$2\text{Li}_2\text{MnO}_3$ - Li $\rightarrow \text{Li}_3\text{MnO}_4 + \text{MnO}_2$	4.6			
Theory predicts that spinel formation occurs first at the surface of the composite material.				

Model capacity Q_{tot} of layered-layered composites

- possible strategy: Maximize Q_{tot} by optimization of $\{M,M',x,f_2\}$
- but, $f_2(O) > 0 \rightarrow$ hysteresis and fade, so optimize only $\{M,M',x,f_2(M')\}$

Theory predicts that one should avoid oxygen loss on the first cycle to maintain the composite 'layered-layered' structure.

Materials approach: Selection of M'

Criteria for M'

- (1)Strong bonding with oxygen
- (2)Oxidation state higher than 4+ is stable
- (3)Preferencially substitute for the Mn in Li₂MnO₃ domain
- (4)Should form reversible dumbbell configuration with Li_{tet} during deep charge in order to maintain structural stability

Candidates for M'

V: **5**,4,3,2+ stable

Mo: 2,3,4,5,**6**+ stable

Ru: 2,**3**,**4**,6,8+ stable

Cr: 2,**3**,6+ stable

Sn: 2,4+ stable

Ti, **Zr**: strong bonding with oxygen, but not stable higher than 4+ oxidation state. Can be used for control system

Prediction from modeling calculations: doping or substitution should be made on Li₂MnO₃ component to be effective in countering voltage fade.

Relative energies of substitution and doping

First principles DFT calculations are used to predict stability of dopants and substitutions into either $LiMO_2$ (layered) or Li_2MnO_3 (monoclinic) components. Many cases the $LiMO_2$ substitution is favorable. Prediction: it will be difficult to dope or substitute into Li_2MnO_3 and voltage fade will be hard to control.

- Roy/Hakim

Materials approach

Target systems

- $(1)Li_2M_{1-x}M''O_3$ (M" = Ti⁴⁺, Zr⁴⁺, Ru⁴⁺, V[?], Mo[?]...)
- high temperature synthesized well crystalline form is good for structural study. However electrochemically not active at room temperature.
- low temperature synthesized poorly crystalline form is electrochemically active at room temperature, but not good for structural study.
- \rightarrow Electrochemical test of well crystalline Li₂Mn_{1-x}M"_xO₃ at elevated temperature.

(2)
$$\text{Li}_{1.2}\text{Ni}_{0.2}\text{Mn}_{0.6-x}\text{M}_{x}^{"}\text{O}_{2}$$
 (M" = Ti, Zr, **Ru**, V, Mo)

- 50/50 composition
- M" substitute for Mn^{4+} in Li_2MnO_3 domain or in $LiNi_{0.5}Mn_{0.5}O_2$ domain. (control sample of $Li_{1.2}Co_{0.4}Mn_{0.4-x}M''_{x}O_2$ where M''^{4+} substitutes for Mn^{4+} in Li_2MnO_3 domain).
- Room temperature electrochemical test of well crystalline material.
- Can be extended to $Li_{1.2}Ni_{0.15}Mn_{0.55-x}Co_{0.1}M"_xO_2$

(3)
$$\text{Li}_{1.2}\text{Ni}_{0.15-x/2}\text{Mn}_{0.55-x/2}\text{M}'_{x}\text{O}_{2}$$
 (M'=Fe, Co, **Cr**, **V**, Mo)

- 50/50 composition
- M'^{3+} substitutes for $Ni_{0.5}Mn_{0.5}$ in $LiNi_{0.5}Mn_{0.5}O_2$ domain.
- Effect of Co can be compared.

Applications of capacity model

LiMO2	Li2M'O3	X	f1	f2	Q1	Q2	Qtot
M= Co		0.0	0.85		135		135
Со	M'=Mn	0.5	0.85	0.95	106	236	342
Ni0.5Mn0.5	Mn	0.5	0.85	0.75	107	189	296
(0.375, 0.375, 025)	Mn	0.5	0.85	0.60	107	151	257
	Ru	1.0		0.91		298	298
	Ru0.9Zr0.1	1.0		0.84		278	278
	Ru0.5Mn0.5	1.0		0.91		305	305
(0.375,0.375,025)	Ru	0.5	0.85	0.50	88	103	191
(0.375,0.375,025)	(V,Cr,Ru)						?

Capacities model estimates the results of substitution or entirely new Li₂M'O₃ materials.

Plateau variation - Ru effect; C2/m monoclinic

Materials that theoretically hold onto their oxygen in Li₂M'O₃ component were synthesized and run in Li batteries.

xLi₂Ti/MnO₃ • (1-x)Li(Ni_{0.5}Mn/Ti_{0.5}O₂): first charge

Analysis of first charge in Ti-substituted materials suggests that oxygen loss is mitigated, but impedance is higher.

Layered O3 LiMO₂: M substitution

Formal M oxidation states in $LiMO_2 = 3+$; $Li_{1-x}MO_2 > 3+$

dumbbell defect formation energies

spinel formation energies

dumbbell – Fe and Cr dominates

spinel – Co and Ni dominates

These are the energies predicted for structure alterations of composites likely occurring and/or are favored during cycling.

Homogeneity: critical parameter

Production of $Ni_{0.25}Mn_{0.75}(OH)_2$ precursor using our CSTR reactor. Product - Lithiation

-temperature, time @ temp.

 $Ni_{0.25}Mn_{0.75}(OH)_2$

precurso

Synthesis Method

Co-precipitation

Synthesis methods to make LMR-NMC TODA HE5050: 0.5Li₂MnO₃•0.5Li[Ni_{0.375}Mn_{0.375}Co_{0.25}]O₂

- Precursors:
 - Direct solid state reaction
 - Sol-gel reaction
 - Combustion synthesis
 - Co-precipitation
 - Hydroxide, oxalate, carbonate
- Direct comparison within typical synthetic processes
- Chemical analysis to confirm stoichiometries

Four routes of synthesis being pursued with confirmed identical stochiometries from ICP elemental analysis. Voltage fade will be assessed per sample and go/no-go decision on synthesis route will be made.

Synthesis approach: Sol-gel method

- Atomic mixing
- (1) Multi-component system, doped Li(NMCM')O₂ possible
- (2) Small primary particle size (nanosize) possible

Sol-gel synthesis allows us to make single phase materials as well as control crystallite size by temperature choice.

0.5Li₂MnO₃•0.5Li[Ni_{0.375}Mn_{0.375}Co_{0.25}]O₂ Carbonate, sol-gel and Fe doped

No change in VF or VF mechanism observed for carbonate precursor versus sol-gel prepared material. No change in VF for Fe-doped samples.

Collaborations

Partners:

- Academic partner MTU sub-contract
 - Project titled "Transmisson Electron Microscopy (TEM) Characterization of Battery Materials"
- <u>Laboratory Partners</u> -
 - ES194 ABR project "Addressing Voltage Fade: Synthesis and Characterization of Lithium- and Manganese-Rich Electrode Structures" (P.I. Dr. Michael Thackeray)
 - ES191 ABR project "Impact of Surface Coatings on LMR-NMC Materials: Evaluation and Downselect" (P.I. Dr. Ali Abouimrane)
 - ES193 ABR project "First-Principles Models of the Atomic Order and Properties of LMR-NMC Materials" (P.I. Drs. Roy Benedek and Hakim Iddir)
 - ES195 ABR project "Phase Relations and Voltage Fade Response in LMR-NMC Materials" (P.I. Dr. Ira Bloom & team)
 - The Center of Nanoscale Materials (CNM) at Argonne is used to analyze materials.
 - Scientists: Dr. David Gozstola and Dr. Vic Maroni
 - The Advanced Photon Source (APS) at Argonne is used to analyze materials.
 - Scientist: Drs. Mali Balasubramanian (APS Science).

Future work

- •Conduct more synthesis focusing on LMR-NMC TodaHE5050 composition.
 - •Dopants and substitutions into both Li₂MnO₃ and LiMO₂ components
 - •Synthetically check/confirm the incorporation of other dopant elements namely Ti, Cr, V, Mo, Ru and Sn.
- •Run batteries, analyze data
 - Feed information to theory group
 - •Work together to direct focus or redirect if need be
- •Advanced analytical methods (SEM, TEM) and diagnostic tools @APS & CNM (Raman) will be used to characterize new materials and will provide basic science knowledge.
- •Glow discharge measurements on samples will be initiated to measure oxygen content in the as-prepared and cycled materials.
- •DEMS work will be initiated.
- •Collaborations with other ABR teams will continue, and others will be initiated.

Summary & Conclusions

- Strong interface with other Argonne VF groups
 - Would like to work with others
- Li-rich Mn-rich cathodes have a VF
 - Theory focuses on thermodynamics of structures and components
 - Mechanism likely driven by the kinetics
 - Can we slow the transformation that occurs
 - Can we contain the oxygen loss, and mitigate spinel formation at the surface
 - Synthetic solutions are possible
- Synthesis project underway to solve VF
 - Looking at optimized M': Ti, Ru, and Cr; next V & Mo
 - Concept delay plateau onset, and evaluate both dopants and substitutions
 - Stacking sequence suppress spinel formation
 - Processing homogeneous samples critical for best performance

